Tetrahedron Letters Vol. 21, pp 3903 - 3906 © Pergamon Press Ltd. 1980. Printed in Great Britain

> STEREOSPECIFIC PHOTOCYCLIZATION OF α-BISULFENYLATED KETO COMPOUNDS.¹ CIS-DIHYDROBENZOTHIOPHENES. Tadashi Sasaki*, Kenji Hayakawa, and Sumio Nishida

Institute of Applied Organic Chemistry, Faculty of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

<u>Summary</u>: Irradiation of a-bisulfenylated keto compounds in acetonitrile affords the cis-fused dihydrobenzothiophenes which are dehydrated to benzothiophenes in high yields.

Introduction of a sulfur substituent to a position of a carbonyl group enhances the thermodynamic acidity of an adjacent proton by $\sim 10^3$ over a simple ketone and stabilizes an anion (enolate) at the carbon bearing sulfur.² Such a fact allows sulfur to be widely used in organic synthesis as a chemical control element.³ However, the effect of sulfur substituents in photochemical reaction has received little atention because of the easiness of photochemical homolytic C,S-bond cleavage.⁴ We have examined the photochemical behavior of α -bisulfenylated keto compounds as part of our studies on organic photochemistry.¹

A number of α -bisulfenylated keto compounds (<u>1</u> and <u>7-13</u>) were prepared in high yield from the corresponding β -keto sulfides by successive treatment with NCS/OCl₄ and thiophenol/triethylamine/CH₂Cl₂.⁵ Irradiation of an argon-degassed benzene solution (5x10⁻³ M) of keto sulfide <u>1</u> with a 100-W high pressure mercury lamp through a Pyrex filter resulted in a rapid disappearance of <u>1</u>, and afforded diphenyl disulfide (<u>2</u>) (63%) and a 3:4 diastereomeric mixture of <u>3</u>⁶ (49%) (eq 1). These products were considered to be formed by the radical mechanism.⁴

A remarkable solvent effect was observed. The similar irradiation (30 min) of <u>1</u> in acetonitrile gave dihydrothiophene <u>4</u> as the major product (43%) together with <u>2</u> (25%) and <u>3</u> (21%) (eq 2). Compound <u>4</u> was also obtained (20%) when methanol was used as the solvent. The structural assignment of <u>4</u> (oil) was based on its spectroscopic data: m/e 210 (M⁺), 192 (M⁺-H₂O); IR (neat) 3380 (OH) cm⁻¹; ¹H NMR (CDCl₃) δ 2.45-3.40 (m, 4H, methylene), 3.10 (s, 1H, exchangeable, OH), 4.77 (s, 1H, methine), 7.08-7.25 (m, 4H, aromatic), and the chemical conversions. The alcohol <u>4</u> was converted (Ac₂O/4-dimethylaniopyridine/pyridine) to the acetate <u>5</u>, mp 135-137 ^OC; m/e 252 (M⁺); δ 2.08 (s, 3H), 2.6-3.7 (m, 4H), 7.26-7.14 (m,4H). Tretment of <u>4</u> with BF₃.Et₂O/CH₂Cl₂ gave a quantitative yield of benzothiophene <u>6</u>, mp 58-60 ^OC; δ

3.13-4.02 (A_2B_2 -signal, 4H), 7.1-7.9 (m, 4H). The cis configuration of <u>4</u> was determined on the basis of (a) the abnormally low chemical shift of the sulfur methine proton (the van der Waals effect)⁷ (b) the strongest shift (shift slope 1.03) next to the hydroxyl signal (5.02) in the Eu(fod)₃ study and (c) the low field shift of this signal ($\Delta\delta$ =-0.35 ppm) in acetate <u>5</u>.

The generality of this stereospecific photocyclization in acetonitrile was explored with substrates 7-13 (Table 1). In most cases, cis-dihydrothiophenes were obtained as the virtually sole product and the photoproducts were easily dehydrated to the corresponding benzo-thiophenes by treating with $BP_3 \cdot Et_2O$. Photolysis of α -deuterated <u>11b</u> gave <u>2</u> (46%) and <u>18b</u> (45%) with complete deuteration at the sulfur methine position (Table 1).

From these results, two mechanistic paths a and b (eq 3) may be postulated to account for the formation of cis-dihydrothiophenes. Since S-aryl vinyl sulfides are well known to photocyclize in a conrotatory fashion,^{8,9} the above results can be explained by the prior enolization to <u>la</u> which photocyclizes to the thiocarbonyl ylide <u>A</u> (path a).^{10,11} The intramolecular protonation by the bridgehead hydroxyl group would lead to the cis dihydrothiophene.¹² Alternatively, the reaction occurs by the direct cyclization mechanism via the intermediate <u>B</u> (path b). The cis ring closure would be favored here by the steric reasons.

The presence of two sulfur substituents is essential for the above reactions and the simple S-phenyl β -keto sulfides are photoinert under the same conditions. Furthermore, the decreased yield of <u>18b</u> compared with <u>18a</u> indicates the involvement of deuterium-migration in the reaction. From these observations, path a seems to be much preferable. The detailed mechanistic studies of this novel photocyclization are in progress.

starting materials	photoproducts ^C (yield %)	dehydration products (yield %) ^d
<u>1</u>	<u>4</u> (43)	
S 7 SPh	H ^{64.25} OH δ3.41	14 (43) 21 (97)
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	S S I I OH 63.43	$ \begin{array}{c} $
PhS SPh Me 0	PhS 5 1	Ph5 5 I (19)h Me 2((99)
PhS R SPh Ph	PhS 5.12 PhS 5.12 Ph	
<u>11</u> a. R=H b. R=D PhH2CS SPh	$\begin{array}{c} \text{OH} \ \underline{18} \ \underline{0.F} \\ \underline{63.88} \ \underline{-5.5} \\ \underline{63.88} \ \underline{-5.5} \\ \underline{64.68} \\ \underline{7.5} \\$	$\begin{array}{cccc} R = H & (71) & \underline{25} & (95) \\ R = D & (45) \\ \end{array}$
Ph 0 12	Ph OH64.25	19 (46) Ph <u>26</u> (92)
MeO2CH2CS SPh Ph 0 <u>13</u>	MeO2CH2CS S Ph OH 64.87	$\begin{array}{c c} & MeO_2CH_2CS \\ \hline \\ 20 \\ (36) \\ \end{array} \begin{array}{c} Ph \\ 27 \\ (91) \\ \end{array}$

<u>Table 1</u>. Photolyses of β -Keto Sulfides and Dehydration of the Photoproducts^{a,b}

Table 1. (continued)a All photolyses were carried out in acetonitrile $(5x10^{-3} \text{ M}, \text{Pyrex})$.b Dehydration was effected by treating with $BF_3 \cdot Et_2 0$ in $Ol_2 Cl_2$ at room temperature.c Allproducts were purely isolated by column chromatography using hexane/ether and the yields areb ased on the starting naterials consumed (~ 80 conversion).d Isolated yields.e A quartzfilter was used.f 16 was found to be easily dehydrated to 23 during work-up.g Overallyield from 9.h The major product was 1-phenylthio-propan-2-one (38%).

References

- 1. Photochemistry of Organosulfur Compounds. Part 2. For part 1, see T. Sasaki, K. Hayakawa Tetrahedron Lett., 21, 1525 (1980).
- 2. R.M. Coates, H.D. Pigott, J. Ollinger, Tetrahedron Lett., 3955 (1974).
- 3. For a review, see B.M. Trost, Chem. Rev., 78, 363 (1978).
- 4. A. Schönberg, A.K. Fateen, S. Omran, J. Am. Chem. Soc., 78, 1224.
- 5. Satisfactory elemental analyses and spectra compatible with the structural assignments were obtained for all new compounds.
- 6. Spectral data of <u>3</u> are as follows. IR (neat) 1720 cm⁻¹; MS m/e 202 (parent), 101 (base); ¹_H NMR (CDC1₂) δ 4.19 (s, 0.86H), 4.04 (s, 1.14H), and 3.4-2.5 (m, 8H).
- 7. H. Günther, "NMR-Spektroskopie," Georg Thieme Verlag: Stuttgart, 1973.
- 8. (a) A.G. Schultz, W.Y. Fu, R.D. Licci, B.G. Kurr, K.M. Lo, M. Boxer, <u>J. Am. Chem. Soc.</u> <u>100</u>, 2140 (1978); (b) A.G. Schultz, M.B. DeTar, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 3564 (1976);
 (c) A.G. Schultz, M.B. DeTar, J. Am. Chem. Soc., <u>96</u>, 296 (1974).
- 9. T. Wolff, J. Am. Chem. Soc., 100, 6157 (1978).
- (a) A. Padwa, A. Au, G.A. Lee, W. Owens, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 3555 (1976); (b) A. Padwa A. Au, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 5581 (1976).
- 11. Since no enol tautomer could be detected by IR and ¹H NMR (CDC1₃, CD₃OD, and CD₃CN), the possibility of photochemical enolization cannot be ruled out.
- 12. The photochemically generated thiocarbonyl ylides were shown to be sufficiently basic to be protonated by alcohols like methanol.^{8b}

(Received in Japan 27 June 1980)